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Table 1.  Critical values of the test parameter for 

the Student’s t-test required to conclude signii-

cant difference3. These values are for 2-sided 

comparisons which make no presumption about 

the value of the second mean relative to the irst.

N zcritical

       Conidence (2-sided)

95% 99% 99.90%

2 4.303 9.925 31.600

3 2.776 4.604 8.610

4 2.447 3.707 5.959

5 2.306 3.355 5.041

6 2.228 3.169 4.587

7 2.179 3.055 4.318

8 2.145 2.977 4.140

9 2.120 2.921 4.015

10 2.101 2.878 3.922

11 2.086 2.845 3.850

12 2.074 2.819 3.792

13 2.064 2.797 3.745

14 2.056 2.779 3.707

15 2.048 2.763 3.674

16 2.042 2.750 3.646

21 2.021 2.704 3.551

26 2.009 2.678 3.496

31 2.000 2.660 3.460

41 1.990 2.639 3.416

51 1.984 2.626 3.390

61 1.980 2.617 3.373

Abstract 

The Student’s t-test is rearranged in 

order to predict the sampling (N) re-

quired to conclude signiicant difference 
between two observation sets at a par-

ticular conidence level. The expression 
is appropriate for small or large observa-

tion sets. When the difference in means 

is small relative to the standard devia-

tion, more tests are required in order to 

reliably detect that difference.

Introduction

In 2012, Keysight Technologies intro-

duced the Express Test option for the 
G200 NanoIndenter platform. This 

option implements traditional indenta-

tion testing in a revolutionary way in 

order to achieve unprecedented testing 

speeds 1,2. Express Test performs one 
complete indentation cycle per second, 

including approach, contact detection, 

load, unload, and movement to the next 
indentation site. One hundred indenta-

tions can be performed at one hundred 

different sites in less than 100 seconds. 

Given that indentations can be per-

formed so quickly, a new question arises: 

How much testing is enough testing? 

The purpose of this note is to answer this 

question by applying the Student’s t-test 

in an uncommon way.

The Student’s t-test is a statistical 

test used to determine, to a reason-

able degree of conidence, whether two 
observation sets obtain from different 

populations. Implementation of the 

Student’s t-test always begins with the 

assumption that the two observation 

sets come from the same population. 

This is called the “null-hypothesis”. If the 

difference between the two averages is 

suficiently large relative to measure-

ment scatter, then we reject the null 

hypothesis and conclude that the two 

observation sets do in fact come from 

different populations. If we assume that 

each set contains the same number of 

observations (N), then the Student’s 

t-criteria for concluding signiicant dif-
ference is expressed as

         (1)

where (x—i ) and si
2 represent the aver-

age and standard deviation of each 

observation set. The left-hand side of 

the above inequality is called the “test 

statistic”. The test statistic is compared 

to a value, zcritical, which is the threshold 

for concluding signiicant difference at 
a particular conidence level. Typically, 
values for zcritical are obtained from a 

table, organized according to the number 

of independent measurements and the 

desired level of conidence. Such a table 
can be found in any textbook on statistics 
and is provided in this note as Table 1.  



The following example illustrates how the 
Student’s t-test may be used to interpret 

indentation measurements. Let us suppose 

that we perform 10 indentations on each 

of two materials (A & B) with the following 

results: For material A, the average hard-

ness is 4.91GPa with a standard deviation 

of 0.23GPa. For material B, the average 

hardness is 5.11GPa with a standard 

deviation of 0.21GPa. The test-statistic is  

calculated as 

 

and this value is compared to the critical 

values for signiicant difference. For N=10, 

we ind that zcritical is 2.101 at the level of 

95% conidence and even larger for great-
er conidence levels. Since the value of the 
test statistic (2.031) is less than the value 

of zcritical, we accept the null hypothesis. 

In other words, even though we obtain 

an average hardness for material B which 

is 0.20GPa greater than that obtained 

for material A, we have no justiication 
for concluding that material B is actually 

harder than material A. The fact that the 

test statistic is less than zcritical at the 

level of 95% conidence tells us that if two 
observations sets (N=10 for each) were 

in fact drawn from the same population, 

we would expect this degree of variation 
in more than 5% of cases. Thus, because 

there is at least a 5% chance that these 

two observation sets could have come 

from the same population, we continue in 

our presumption that material A and mate-

rial B have the same hardness. 

Now if the hardness of material B were 

5.17GPa with the same standard deviation 

(0.21GPa), then the value of the test sta-

tistic would be 2.640. Thus, we conclude 

that material B is harder than material A at 

the level of 95% conidence, but not at the 
level of 99% conidence. In order to con-

clude signiicant difference at the level of 
99.0%, the difference in average hardness 

between material A and material B would 

have to be more than 0.28GPa. At the level 

of 99.9% conidence, the difference would 
have to be 0.39GPa.

This is the regular use of the Student’s 

t-test: Given two sets of observations, the 

experimenter uses the Student’s t-test in 
order to determine whether the two sets 

are signiicantly different, presumably as 
the result of some controlled (indepen-

dent) variable.

However, the Student’s t-test can also be 

used in the experimental design phase in 
order to predict the number of observa-

tions which must be made in order to be 

sensitive to a given difference at a given 

conidence level. First, we note that both 
the test statistic and zcritical depend on 

N. The test statistic increases with N , and 

zcritical decreases with N . Thus, more ob-

servations increase the sensitivity to sig-

niicant difference. Given two observation 
sets from slightly different populations, 

one may be able to conclude signiicant 
difference at a particular conidence level 
if N=20, but not if N=10. Thus, if we solve 

the Student’s t-test for N , then the result-

ing expression would tell us the number of 
observations we must make in order to be 

sensitive to a given difference at a given 

conidence level. This is the motivation 
behind this application note.  

Theory

In order to use the Student’s t-test to 

predict the number of necessary observa-

tions, we must solve it for N. The solution 

is not as trivial as it might seem, because 

zcritical depends on N. We begin by mak-

ing some useful simpliications. First, we 
assume that  x—1 is greater than x—2, and we 

express the ratio of x—2 /x
—
1 as the factor F:

        F = x—2 /x—1; F<1.                   (2)

The requirement of F<1 is no real restric-

tion. Because we assume two-sided com-

parisons1, the two observation sets can 

always be ordered so that the set with the 

larger average is identiied as “Set 1”. Fur-
ther, we assume that for both observation 

sets, the standard deviation is a constant 

fraction, q , of the mean:

       q =  s1/x—1  =s2/x—2.             (3)

With these simpliications in mind, we 
square both sides of the t-test inequality2 

and isolate the parameters which depend 

on N  on the left-hand 
side:

                       (4) 

 

1. We are using the more conservative “two-sided” version of the Student’s t-test which makes no presumption about the value of the second mean relative to the irst.
2. Squaring both sides holds no ambiguity, because both sides of the inequality are positive.
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Figure 1.  Approximate linear relationships between N/zcritical  and N for three different conidence levels, used 
to solve the Student’s t-test for N. Values for this plot are calculated using values from Table 1.



3. Although clearly N must be zero when N/zcritical is zero, we have a non-zero intercept, because the relationship is not linear (or meaningful) for N< 3.  

Then, we apply the aforementioned simpli-

ications to get

               (5)

or more simply,

                    (6)

The above expression reveals the value 
of our simpliications: the right-hand side 
of the inequality is independent of the 

absolute values of the averages and the 

standard deviations. The left-hand side of 

the inequality is handled by elucidating the 

relationship between (N/z 2
critical) and N . 

Figure 1 shows a plot of the parameter (N/

z2critical) vs. N  for three common coni-

dence levels. The values for this plot are 

calculated from those provided in Table 1. 

Figure 1 clearly reveals an approximately 
linear relationship between (N/z 2

critical)  

and N . Table 2 summarizes the values for 

slope and intercept (m  and b , respectively) 

for the three relevant conidence levels.3 

Values for m  and b  for other conidence 
levels can be determined easily in the 

same way. Thus, the left-hand side of the 

inequality can be expressed as a linear 
function of N , making the inequality

  

                       (7)

from which we derive our criteria for N :

                  (8)

Figure 2 illustrates the functionality of the 

criteria for a few exemplary situations. The 
plotted curves in Figure 2 are the equalities 

for expression (Equation 8); for the inequal-
ity to be met, N  must lie in the space 

above the relevant curve.  

Discussion

The form of our expression (Equation 8) for 
N  conirms intuition: the number of obser-
vations required to adequately compare 

two normal populations ought to depend 

merely on the difference in the means 

(quantiied by F ), the variance (quantiied 
by q2), and the conidence level (quantiied 
by m and b). If the variance is large, then N 

must be correspondingly large. Further, N 

increases as F  approaches unity, which is 

as it should be: more observations are re-

quired in order to distinguish means which 

are very close together. Finally, if the two 

populations are in fact identical, then there 

is no value of N  which is large enough to 

distinguish them. 

There are two ways to use Figure 2 (or a 

similar plot generated with the appropri-

ate conidence level and value for q). First, 
we can use this plot to predict how many 

observations we must make in order to 

be sensitive to a particular difference in 

means. For example, let us assume that we 
wish to work at the level of 99.9% coni-

dence and we expect the standard devia-

tion to be 5% of the mean (q  = 0.05). Under 

these conditions, if we wish to discern 

signiicant difference in two observations 
sets for which the means differ by 2%, then 

we must make more than 138 independent 

observations, because this is the value of 

the middle curve (representing our condi-

tions) at F  = 0.98. Another way to use this 

plot is to determine the maximum value of 
F  for which signiicant difference can be 
discerned for a given number of observa-

tions. Again, using the middle curve (q 

= 0.05; 99.9% conidence), we can see 
that if we make 10 observations of each 

population, we will be unable to conclude 

signiicant difference if the second average 
is more than 91% of the irst average, be-

cause this is the point at which the middle 

curve crosses the threshold N  = 10.  

This analysis is indifferent to the physi-

cal cause of signiicant difference in the 
observed parameter. In experimentation, 
the independent variable is that param-

eter which is purposely and systematically 

varied order to understand its effect on the 

observed dependent variable.  However, 

other variables which are not deliberately 

controlled may also inluence the depen-

dent variable. The independent variable of 

a hardness test might be something like 

tempering time. The dependent variable is 

hardness. Other variables which may inlu-

ence the measured hardness might include 

measurement temperature or the rigidity of 

the test frame. The well designed experi-
ment minimizes the inluence of all physical 
variables other than the independent 

Table 2.  Linear best-it constants for  
N/z2critical vs. N (Figure 1). 

Conidence Level m b

95.0% 0.2613 -0.3594

99.0% 0.1510 -0.3032

99.9% 0.0919 -0.2583
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Figure 2.  Student’s t-test, solved for N, for three exemplary situations. Lines represent the equalities which limit 
inequality (Equation 8). Thus, N must be greater than the relevant curve.
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variable, but no experiment is perfect. The 
Student’s t-test will discern signiicant 
difference (or not) regardless of whether 

that difference is due to the independent 

variable or other uncontrolled variables. 

The degree to which the inluence of 
these other variables can be minimized 

sets practical limits on F. One cannot 

blindly increase sensitivity by increasing 

N , because eventually, one may become 

sensitive to signiicant differences which 
are caused by variables other than the 

independent variable. Thus, the  

experimenter should wisely choose F 

—the expected ratio of means—to include 
sensitivity to the independent variable, 

but exclude sensitivity to other variables. 
For example, if normal variations in testing 
temperature may cause a 1% variation in 

the measured hardness, then one must be 

content with F  < 0.99. One way to estab-

lish reasonable limits on F is to compare 

the means from two large observation 

sets acquired under conditions which the 

experimenter believes to be identical (or as 
much so as possible).  
 

By virtue of its speed, Express Test dra-

matically improves the ability to detect 

signiicant differences in Young’s modulus 
and hardness, relative to typical nanoin-

dentation technology. Let us say that it 

takes 10 minutes to perform 10 nanoin-

dentation tests at 10 different sites (1 

minute per site) on each of two materials. 

If the standard deviation is 5% of the mean 

(q  = 0.05) and we employ a conidence 
level of 99.9%, then we can detect sig-

niicant difference if the two means differ 
by more than 9%. In the same amount of 

time (10 minutes or 600 seconds) we can 

perform 600 measurements with Express 
Test on each material, which implies that 

with the same standard deviation and 

conidence level, we can detect signiicant 
difference if the two means differ by only 

1%. Thus, for a given testing time, Express 
Test dramatically improves sensitivity to 

signiicant difference.

Conclusions

The Student’s t-test is used in an un-

common way to predict the number of 

observations (N ) which must be made in 

order to be sensitive to a given difference 

at a given conidence level. Subject to a 
few simpliications, N  depends on three 

things: the difference in means one wishes 

to sense (F ), the normalized variance 

(q2), and the desired conidence level. 
This analysis is appropriate for any kind of 

experimentation to which the Student’s 
t-test might apply. With respect to na-

noindentation, this analysis illuminates the 

beneits of the ultra-fast testing afforded 
by the Express Test option for Keysight’s 
G200 NanoIndenter. Because it allows 

many more independent observations in 

a given time frame, Express Test dramati-
cally improves sensitivity to signiicant 
difference.  
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